
NASA-CR-Z0331_5 /F ....,Di_ d_

National Aeronautics and
Space Administration

Ames Research Center

Moffett Field, California 94035-1000

ARC 275 (Rev Mar 93)





Implementing Multidisciplinary and

Multi-zonal Applications Using MPI
Samuel A. Fineberg 1

Report NAS-95-003 January 1995

Computer Sciences Corporation

Numerical Aerodynamic Simulation

NASA Ames Research Center, M/S 258-6

Moffett Field, CA 94035-1000

(415)604-4319

e-mail: fineberg@nas.nasa.gov

Abstract

Multidisciplinary and multi-zonal applications are an important class of applica-

tions in the area of Computational Aerosciences. In these codes, two or more dis-

tinct parallel programs or copies of a single program are utilized to model a single

problem. To support such applications, it is common to use a programming model

where a program is divided into several single program multiple data stream

(SPMD) applications, each of which solves the equations for a single physical dis-

cipline or grid zone. These SPMD applications are then bound together to form a

single multidisciplinary or multi-zonal program in which the constituent parts

communicate via point-to-point message passing routines. Unfortunately, simple

message passing models, like Intel's NX library, only allow point-to-point and glo-

bal communication within a single system-defined partition. This makes imple-

mentation of these applications quite difficult, if not impossible. In this reportit is

shown that the new Message Passing Interface (MPI) standard is a viable portable

library for implementing the message passing portion of multidisciplinary applica-

tions. Further, with the extension of a portable loader, fully portable multidisci-

plinary application programs can be developed. Finally, the performance of MPI is

compared to that of some native message passing libraries. This comparison shows

that MPI can be implemented to deliver performance commensurate with native

message passing libraries.

1. This work was supported through NASA contract NAS 2-12961.



1.0 Introduction and Background

Multidisciplinary and multi-zonal applications are an important class of programs
in the area of Computational Aerosciences. In these codes, two or more distinct

parallel applications or copies of a single application are utilized to model a single

problem [BaW93]. To support such programs, it is common to use a programming

model where an application is divided into several single program multiple data

stream (SPMD) applications, each of which solves the equations for a single phys-

ical discipline or a particular portion of a data set (i.e., a grid zone). These SPMD

applications are then bound together to form a single multidisciplinary or multi--

zonal program in which the constituent parts communicate via point-to-point mes-

sage passing routines. Unfortunately, simple message passing models, like Intel's

message passing library (NX) or Thinking Machines' message passing library

(CMMD), only allow point-to-point and global communication within a single

system-defined partition. This makes implementation of multidisciplinary applica-
tions quite difficult, if not impossible.

Several non-portable libraries have been implemented to solve this problem. These

include the intercube library for the iPSC/860 [Bar91] and the Map library for the

Paragon [Fin93c]. Neither of these solutions allow a single source code to be used

across multiple systems. To develop portable multidisciplinary programs, there are

several requirements. First, one must have a portable message passing library that
is capable of supporting multiple process I groups, collective communication

within process groups, and inter-group communication. Second, one must have a

portable loader that is capable of starting multiple, possibly different, programs as

a single multidisciplinary application. Finally, this loader must have some way of

telling the programs it has loaded about where the different applications reside.

Otherwise it would be impossible to communicate between applications.

There are, of course, quite a few portable message passing libraries. Of these, sev-

eral provide the support necessary for multidisciplinary process groups and collec-

tive communication. Two of these are PVM [GeS91, GeB93] and MPI [Mes94].

These libraries are available for most MPP systems as well as for networks of

workstations. MPI was chosen as the preferable message passing library for sev-

eral reasons. First, while MPI is still new, it is a standard. Therefore, it is not

expected to undergo the constant changes that other libraries, most notably PVM,

suffer from. In addition, from a performance perspective, MPI should perform bet-

ter on MPP systems than PVM. This is primarily due MPI's statically defined

group structures, and its ability to be implemented without buffering. While these
factors should enable MPI to perform better than PVM, MPI will still be worse

than native libraries until it is directly supported by vendors. To date, only IBM

Research has provided a vendor optimized version of MPI. This version is still

experimental, but it shows promise because its performance is as good or better

than IBM's proprietary message passing library. Supported vendor implementa-

1. In this paper, the term "process" will be used instead of "processor" or "node." This refers to the fact that

more than one MPI "'process" may be present on a single processor of a parallel system.

2



tionsof MPI should begin to appear in the coming year and hopefully will begin to

replace vendor specific libraries. For more information on performance issues see
Section 5.

Portable loaders, however, are far more difficult to find. PVM does provide pro-

gram loading facilities, and does support multiple executables within a single job.

However, it does not provide a portable means for determining where applications

have been loaded. MPI does not provide any loading facilities, therefore, all load-

ing must be done using means external to MPI. In this paper, a portable loader

interface, MPIRUN, is described. MPIRUN may be implemented on virtually any

MPP system or workstation network, and it is simpler than the loader provided by

PVM. This simplicity makes it far easier to integrate MPIRUN with existing

resource allocation and scheduling software. Finally, MPIRUN not only loads user

programs, but also provides run-time loading information needed to initiate inter--

application communication.

2.0 MPI Basics

MPI has several features that make it ideal for multidisciplinary program develop-

ment. In this section some MPI basics will be presented, followed with the

advanced features necessary for multidisciplinary and multi-zonal applications.

This paper assumes that the reader has knowledge of some other message passing

library, e.g., NX, CMMD, etc., and many of the details are left to the reader. For a

complete specification of MPI see the standard [Mes94].

2.1 Basic send and receive operations

MPI provides a vast array of communication operations. Unfortunately, since the

only guide to writing MPI programs to date is the standard [Mes94], one can easily

become daunted by the amount of functionality provided by MPI. However, for

most programs one can ignore most of these features. For simple point to point

message passing most users can and should stick with the basic MPI_Send and

MPI_Recv synchronous send/receive operations. These basic operations are anal-

ogous to the csend operation in NX or the CMMD_send_block in CMMD.

MPI is also capable of performing asynchronous message passing, using the

MPI_Isend and MPI_Irecv operations. 2 The MPI_Send operation is spec-

ified as follows:

int MPl_Send(void* buf, int count, MPl_Datatype datatype,

int dest, int tag, MPI_Conaa cumin)

for C, or for FORTRAN:

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

2. MPI also provides several other "modes" for communication, i.e., synchronous, ready, buffered. In some
cases these modes may provide easier conversion to MPI. However, the basic send and receive operations

should provide the highest level of portability and performance.



<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Several of these parameters should appear familiar to readers experienced with NX

or CMMD. buf specifies what data to send. In MPI, buffers are "typed," i.e., all

messages contain data of some specific type. The type could be INTEGER,

REAL, DOUBLE PRECISION, etc. for FORTRAN; or ing, float, dou-

ble, etc. for C. In general, MPI supports any basic data type that the programming

language (e.g., C or FORTRAN) supports. In addition, MPI supports "untyped"

data by passing it as a series of bytes (using the MPI_BYTE data type). 3 When

sending MPI messages, the count is the number of elements of data type
"datatype" in bur. Therefore, if buf is an array of integers, count would be

the number of integers in buf and datatype would be MPI_INT (for C) or

MPI_INTEGER (for FORTRAN). If buf is a single double precision number,

count would be 1 and datatype would be MPI_DOUBLE or MPI_DOUBLE_-

PRECISION. This differs from many other message passing systems because

count is not the number of bytes in buf. This was implemented in order to

ensure portability between systems that have different size data types. In addition,

it enables MPI to be implemented for heterogenous environments, i.e., data can be

converted between different formats. 4 tag is used as a selector between messages
sent to the same process. 5 dest specifies the "rank" of the process to which the

message is to be sent. A rank is roughly the same thing as a process or processor
number in most systems. The difference is that all ranks are relative to some

grouping of the system's processes specified by a "communicator" (comm). Nor-

mally, most programs can use the pre-defined communicator MPI_COMM_WORLD.

This communicator includes all processes in a user's program, so a rank relative to

it will be the same as a processor number on most systems. More information on

communicators will be presented in Section 2.3. The final parameter of

MPI_Send, IERROR, is used for returning an error value to FORTRAN programs

(in C this value is returned directly by the function MPI_Send). This return value
can be used to determine if the send was successful or not.

MPI_Recv is specified as follows:

int MPl_Recv(void* buf, int count, MPl_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

3. Another advanced feature of MPI not discussed in this paper is derived datatypes. These allow buffers to

contain elements that are different basic data types (like C structures). In addition, derived types can be used to
specify strided vectors and other irregular data structures.

4. Support for heterogeneous environments (e.g., data conversion) is implementation dependent, not part of
the standard. HoweveL an MPI program written for a homogeneous environment would not have to be re-writ-
ten to run with a heterogeneous MPI library.

5. Note that the MPI standard only guarantees that the tag field is 16 bits (0 to 65535). While most implemen-
tations support larger tags, it is advisable to keep tags within this limit.

4



Here,buf, count, anddatatype specifythedestinationaddress,size,andthe
datatypeof themessagebeingreceived,source is usedto restrictthereceiveto
messagessentby a processwith a specificrank.Further,tag restrictsthereceive
to messagessentwith thesametag value.Thesevaluesmaybe "wildcarded" by
setting themto MPI_ANY_SOURCE or MPI_ANY_TAG if one wants to receive

messages regardless of their source and/or tag. comm is the communicator men-

tioned before. The sending and receiving communicators must match, i.e., commu-

nicators may not be wildcarded like the source and tag fields, status is a

variable in which message "status" informations is stored. This variable can then

be used to determine information about the message received (i.e., size, sender,

tag). Finally, MPI Recv also returns an error value in the same way as described
for MPI_Send.

Considerasimpleexample where the _llowingprogramis mnbytwoprocesses:

program pingpong

include Jmpif.h'

integer ierr, rank, status(MPI_STATUS_SIZE)

double precision buf(10)

c Initialize MPI Environment

call MPI_Init(ierr)

c Determine your rank in MPI_COMM_WORLD

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

if (rank.eq.0) then

c Process 0 sends i0 double precision numbers to 1

call MPI_Send(buf, i0, MPI_DOUBLE_PRECISION,

$ i, 0, MPI_COMM_WORLD, ierr)

c Process 0 receives i0 double precision numbers from

call MPI_Recv(buf, i0, MPI_DOUBLE_PRECISION,

$ i, i, MPI_COMM_WORLD, status, ierr)

else

c Process 1 receives i0 double precision numbers from

call MPI_Recv(buf, i0, MPI_DOUBLE_PRECISION,

$ 0, 0, MPI_COMM_WORLD, status, ierr)

c Process 1 sends i0 double precision numbers to 0

call MPI_Send(buf, i0, MPI_DOUBLE_PRECISION,

$ 0, i, MPI_COMM_WORLD, ierr)
endif

1

call MPI_Finalize(ierr)

end

In this example, both processes determine what their "ranks" are relative to the

communicator MPI_COMM_WORLD. Then, process 0 sends a message to process

1, and process 1 sends the data back to 0. Note that in a given communicator, all

processes will be numbered from 0 to N-1 (where N is the total number of pro-

5



cesses).The first message uses a tag value of 0, and the second one uses tag 1.

Each message consists of 10 double precision floating point numbers.

2.2 Collective communication

MPI provides a wide range of collective communication operations including

reductions, scans, broadcasts and barriers. MPI's collective operations are block-

ing, i.e., all processes must reach the collective operation before any may proceed

past it. As an example, consider the global reduction operation:

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm conga)

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP,
IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

ROOT, COMM,

Thus, an MPI_Reduce performs some type of reduction operation as specified by

op (i.e., global sum, global max, global min, etc.) on the variable in sendbuf

across all processes belonging to the provided communicator, 6 and the result is

retumed to the root process in recvbuf. The MPI_Allreduce command does

the same thing, but the result is returned to the recvbuf variable in all processes

that belong to the communicator. Therefore, an MPI_Allreduce can be thought
of as an MPI_Reduce followed by a broadcast (MPI_Bcast). 7 This second

option is similar to that provided by the "global" functions in Intel's NX library.

2.3 Groups, Contexts, and Communicators

One of the most powerful, and confusing, aspects of MPI is its use of groups, con-

texts, and communicators to provide a flexible and "'safe" programming environ-

ment. All communication performed in MPI involves a communicator. In its

simplest form, a communicator can be thought of as a group. 8 A group is simply a

mapping from a rank (an integer between 0 and the number of processes - 1) to a

physical process or processor. Therefore, for each communicator there will be a set

of processes, and each process in this set will have a unique rank. Then messages

6. MPI collective communication operations involve only the processes defined by the communicator passed
in to the collective communication routine. If this communicator is MPI_COMM_WORLD, the operation would

involve all available processes. However, as will be detailed in the next section, communicators may only con-
rain a subset of the available processes. This ability to perform collective communication on process subsets is
very important for su pportin g mu ltidisc iplinary and mu lti-zonal application s.

7. A good implementation of MP I_A11 reduce might use a different algorithm for the reduction and skip
the broadcast.

8. Communicators actually consist of both a group and a "context." A context is a mechanism that can be used
for protecting communication operations from interfering with each other. It is similar to a tag, but is not wild-

cardable. Therefore, a message sent using one context can not be received using a different context. This can
be very useful for protecting library communication from other messages, but most users need not worry about
this feature.

6



canbesentbetweenprocessesusingthisrank.Therefore,asin Figure 1theactual

MPI_COMM_WORLD 0 1

MPI_COMM_SELF 0 0

comm_reverse 1 0

Figure 1: Rank example.

processes (A and B) can be represented in different ways. For example, using

MPI_COMM_WORLD, they have ranks 0 and 1 respectively. Further, MPI defines

another communicator, MPI_COMM_SELF, that only contains the calling process.

Therefore, every node will have rank 0 in MPI_COMM_SELF. We could also

define another communicator, comm_reverse, that contains both process A and

B from Figure 1, but reverses their ranks relative to MPI COMM_WORLD. Thus, A

has rank 0 inMPI_COMM_WORLD, and rank I in comm_reverse. B has rank I

in MPI_COMM_WORLD and rank 0 in comm_reverse. Ranks are used as a short-

hand method of specifying a process, and are only unique within a communicator.

Thus, sending a message from process 0 to process 1 in MPI_COMM_WORLD is

functionally equivalent to sending a message from process 1 to process 0 in com-

m_reverse.

Some simple operations on communicators are MPI_Comm_s ize and MPI_-

Comm rank. MPI_Comm size returns the number of processes defined by a

communicator. MPI_Comm rank specifies the rank of the calling process relative

to the communicator. These commands are similar to numnodes and mynode in

NX.

Communicators are not only used for renumbering nodes. They can also be used to

break up the available processes in to disparate groups. Within each subgroup pro-

cesses still have a rank (from zero to the subgroup size minus one). Note that mes-

sages sent using a particular communicator can not be received by any other

communicator. Therefore, messages within a subgroup can not interfere with

another subgroup. In addition, since collective communication operations occur

within a communicator, separate collective operations may occur within each of

these groups. Thus, it is possible to synchronize the processes in one communica-

tor group without involving any processes outside of the communicator in that

synchronization operation.

The easiest way to create subgroups is with the MPI_Comm_split command.

This command is collective, so all processes belonging to the original communica-

tor being spilt (MPI_COMM_WORLD in this example) must call it as follows, in C,

7



MPI_Co_m%_spIit(MPI_COMM_WORLD, color, 0, &newcomm);

or, in FORTRAN,

call MPI_Comm_spIit(MPI_COMM_WORLD, color, 0, newcomm, ierr)

This routine would then create a new communicator (newcomm) in each process.

The communicator generated in a particular process will include the group of pro-

cesses for which the "color" (the value of the variable color ) is the same. There-

fore, there may be 1, 2, or more unique groups of processes created by an

MPI_Comm_split command, as many as there are unique "colors." MPI also

allows processes to specify what rank they wish to be in the new communicator by

giving a "key" (equal to 0 in the example). Ties are broken by the rank in the

source communicator (i.e., MPI_COMM_WORLD in the example), so if the key

value is 0, the processes will be numbered from 0 to the appropriate group size

with ranking in the same order as in the source communicator. For example, con-

Processes @@©@@©
MPI_COMM_WORLD

color

newcorrml

0 1 2 3 4 5

0 1 3 3 0 3

1 2 I0
l

Figure 2" MPI_Comm_spl it example.

sider Figure 2. Here, each processor call MPI_Comm_split with the color value

shown. This causes 3 different communicators to be created, one for each color.

The communicator to which the calling process belongs is returned in newcomm.

Within each group, processes are still numbered 0 to groupsize - 1. Note that there

is no rank defined for process B in the communicator defined for processes A and

E, thus, there is no way to send a message from process A to B using newcomm.

However, it is still possible to send such a message using MPI_COMM_WORLD.

Now that it is possible to create separate communicators, it is still desirable to have

a mechanism for communicating between these communicator groups. One

method is simply to communicate through MPI_COMM_WORLD, which all pro-

cesses will be members of. In addition, MPI provides a mechanism for sending

messages between disparate communicators, i.e., intercommunicators. For exam-

$



pie, considerFigure3. Wecansendamessagefrom processA to processB in two

Processes

MPI_COMM_WORLD

comml

comm2

@@©@@©
0 1 2 3 4 5

°0=3 t 0 i I

Figure 3: Intercommunicator example.

different ways. First, we could send a message from 0 to 1 in MPI_COMM_WORLD.

Another option, however, would be to create an intercommunicator between

comml and comm2. Intercommunicators are used the same way as communicators

in MPI Send and MPI_Recv. However, the dest field in an MPI Send will be

relative to the remote group (if process A sends a message to a process with rank 0

using an intercommunicator created between comml and comm2, the message

would be sent to process B). The source field in an MPI Recv using an inter-

communicator also refers to the remote group (if process B receives a message

from a process with rank 0 using an intercommunicator between comml and

comm2, the source would be process A). Therefore, to send a message from pro-

cess A to process B using an intercommunicator between comml and comm2, the

message would be sent from process 0 to process 0.

To create an intercommunicator, however, some information must be known by

both groups of processes. First, the local processes must know the rank of one pro-

cess from the remote communicator. For this rank to make sense, it must be rela-

tive to some communicator that the local processes creating the intercommunicator

also belong to. The processes, one in each of the communicator groups being

joined, that have a rank known by everyone in both of the groups, are referred to as

the local and remote leaders. It doesn't matter which processes are used as the

group leaders, however, by convention, the group leaders in this paper will always

be the processes with rank 0. Therefore, for Figure 3, we can use processes A, B,

and C as the group leaders for comml, comm2, and comm3. The call for creating
an intercommunicator is as follows in C:

MPI_Intercomm_create(local_comm, local_leader, peer_comm,

remote_leader, tag, &newintercomm)

or, in FORTRAN

call MPI_Intercommcreate(local_conma, local_leader,

$ peer_comm, remote_leader, tag, newintercomm, ierr)

9



where local_comm is the local communicator, local_leader is the rank of

the local leader within local_comm, peer_comm is the communicator to which

both leaders belong (e.g., MPI_COMM_WORLD), and remote_leader is the

rank of the remote leader within remote_comm. Therefore, for Figure 3, to join

comm2 and comm3, local_leader for the processes in comm2 would be 0

with local_comm equal to comm2 (this of course refers to process B). Remote

leader for comm2 would then be 2 and peer_comm would be MPI_COM-

M_WORLD. For the processes in comm3, local_leader would be 0 with

local_comm set to comm3 (this refers to process C), and remote leader would be

1 with peer_comm set to MPI_COMM WORLD (referring to process B).The actual

FORTRAN code for creating this intercommunicator between comm2 and comm3

of Figure 3 is as follows.

Forprocessesin comm2:

call MPI_Intercomm_create(comm2,

$ 2, tag, intercomm, ierr)
0, MPI_COMM_WORLD,

and _rproces_sincomm3:

call MPI_Intercomm_create(comm3,

$ i, tag, intercomm, ierr)
0, MPI_COMM_WORLD,

The remaining parameter, tag, is an integer tag used to ensure that instances of

MPI_Intercomm_create don't conflict, and newintercomm is the new

intercommunicator to be created. MPI_I ntercomm_create is a collective

operation, so all processes in both of the communicator groups must call this oper-
ation at once.

3.0 Implementing Multidisciplinary Applications using MPI

Now, consider how one might map a multidisciplinary application on to lVIPI. As

an example, consider the application described in Figure 4. Here the program con-

• iscip inary Application

Figure 4: Block diagram of a simple multidisciplinary application.

10



sists of two distinct SPMD applications, one that simulates fluid dynamics (e.g.,

the airflow over an airplane wing), and another that simulates structures (e.g., flex

in an airplane wing). In this example multidisciplinary application, both of these

aspects are simulated to provide a more complete simulation. Ideally, one would

want to simulate all aspects of an aircraft by integrating fluids, structures, thermal

effects, etc. in to a complete multidisciplinary simulation.

3.1 Intra-disclplineJzone Communication

As previously stated, one of the most common and successful methods for imple-

menting multidisciplinary and multi-zonal applications is to take existing applica-

tion codes based on a single discipline, and add communication of boundary

information between these application codes to create a unified multidisciplinary

application. Each of these single discipline codes is a SPMD message passing code

with internal point to point and collective communication, I/O, and computation.

The advantage of this technique is that one can use fully tested existing codes and

therefore the development of the multidisciplinary application becomes primarily

an integration problem. The problem, however, is that to use this technique, the

underlying message passing system must allow applications to both operate as

multiple independent SPMD programs, as well as allow communication between

these independent tasks.

Consider how this fits in to the framework of MPI. As with any application, the

MP I_COMM_WORLD

Multidisciplinary Application

Figure 5: Block diagram of communicator assignments for a simple
multidisciplinary application.

appropriate executable is loaded as the proper number of processes. Each process

will have its own rank within the entire application, i.e., in MPI_COMM_WORLD

(see Figure 5). Using this communicator it is possible for any processes to commu-

nicate. However, the problem with this view is that it makes the coding of the sub--

programs much more difficult. For example, within MPI COMM_WORLD, the

fluids code processes may be numbered from 0 to 15, but this would mean that the

11



first structurescodeprocesswouldbe 16.Thiswould requiresignificantre-writing
of the code since all process numbers for the structures code would be offset. In

addition, it would not be possible to perform collective communication within

either of the constituent codes without involving the other codes (since MPI col-

lective communication involves all processes in the provided communicator).

Therefore, one would generally want to split MPI_COMM_WORLD in to two pieces,

one for each executable code. Again consider Figure 5, one can simply break

MPI_COMM_WORLD in to two communicators, i.e., FLUIDS_COMM and STRUC-

TURES_COMM. Within each of these smaller communicators, all processes are

numbered from 0 to N-1 (where N is the number of processes running the code),

processes can now perform collective communication operations within their code

group, and point to point operations within each communicator can not interfere

with any processes outside of the scope of the communicator.

3.2 Inter-discipline/zone Communication

Now that communicators have been defined for communication within each of the

codes, there still needs to be a mechanism for communicating between the codes.

There are two ways that this can be done using MPI. One would be to use MPI -

COMM_WORLD, and to refer to each process by its rank in this communicator for

inter-group communication. The problem is that this reduces modularity and

increases complexity since it becomes necessary to have every process keep track

of how processes are allocated and the size of every group. For example, to deter-

mine the rank of the first structures code it would be necessary to know how many

processes are allocated for fluids in MPI COMM_WORLD, and it would also be nec-

essary to know how processes are allocated (e.g., are they allocated in blocks,
cyclically, subcubes, etc.). A better approach is to use intercommunicators as

shown in Figure 5. Intercommunicators allow direct communication between pro-

cesses belonging to disjoint groups and allow processes in one group to send mes-

sages to another using the ranks defined in the remote group. This means that only

a single rank has to be used for each process, whether communication is within a

communicator or to another communicator. Referring to Figure 5, it is possible to

have fluids process 5 send a message to structures process 3 using FS INTER-

COMM. To create this communicator one can use MPl_Intercomm_create

(see Section 2.3), however, this still requires the programmer to know some infor-

mation about how processes have been allocated (i.e., who are the group leaders).

Unfortunately, using MPI alone, this information is likely to be system dependent,
and thus will not be portable,

4.0 MPIRUN

The problem that has not been addressed in the previous sections is how to estab-

lish the application structure as shown in Figure 5. In other words, an MPI pro-
gram must be able to:

• load and run the correct executables,

12



• establish communicators for each executable (e.g., for the fluids and structures

application codes), and

• create the fluid-structures intercommunicator.

Loading is extemal to the scope of MPI, therefore, some machine specific mecha-

nism must be used for loading the executables. Next, to establish the group com-

municators each process can simply feed an integer representing its executable

group in to the "color" field of MPI_Comm._split. This can be provided in one

of two ways, either the color can be hard-coded into each executable, or the color

values can be distributed at run-time. The first approach is unacceptable because it

requires re-compilation any time the number of zones or disciplines is changed,

and it means that one must have separate executables for each zone in a multi--

zonal application (i.e., where the same code is applied to different data sets each

representing a zone). A better solution is to have this information distributed after

the program is loaded. The final step is to set up intercommunicators. For this it is

necessary to establish "well known" group leaders so that intercommunicators can
be established with MPI_Intercomm_create. This can also be coded stati-

cally, but is also better done at run time to enhance flexibility and code re-use.

While it is possible to establish the correct environment on any machine, it is not

possible to do so portably using MPI alone. Loading is completely non-portable.

On a Paragon, loading is done with nx_load, on an iPSC/860 loading is done

with load, on workstations loading is dependant on the underlying parallel envi-

ronment being used (e.g., Argonne P4 [BuL92], PVM [GeB93], UNIX, IBM's

POE [Ibm94]), etc. Further, since loading can be different, the means for distribut-

ing process allocation information at run time will also be non-portable. To sim-

plify the process and to provide a portable means for specifying MPI applications,

the MPIRUN loader was developed at NASA Ames. MPIRUN can be built on top

of any implementation of MPI, and provides mechanisms for loading, establishes

communicators for each executable, and distributes information about group lead-

ers. Because MPIRUN contains all of the machine specific operations, programs

using MPIRUN for loading and MPI for communication will be portable to any

platform to which MPIRUN has been ported (currently MPIRUN runs on the Intel

iPSC/860 and Paragon, workstations running MPI on top of P4, the IBM SP series,

and the Thinking Machines CM-5).

MPIRUN can be used to start any MPI application, regardless of whether the pro-

gram uses any of MPIRUN's special features. However, to use MPIRUN's ability

to establish a multidisciplinary/multi-zonal application environment, MPIRUN

application codes must link in the MPIRUN library as well as the native MPI

library. They must also include the file "mpirun. h" (for C) or "mpirunf. h"

(for FORTRAN). Finally, an MPIRUN application code must call the routine

MPIRUN_Init immediately after calling MPl_Init, i.e, before any MPIRUN
functions are called. Note that MPIRUN_Init uses MPI functions and therefore it

will not work unless MPI_Init has been called first.

13



To run anMPIRUN program,the "mpirun" command is used. mpirun allows

the user to specify what executables are to be loaded as well as how many pro-

cesses should run each executable. Each of these sets of processes running a given

executable is known as an MPIRUN SPMD application, mpirun also allows the

user to pass arguments to the underlying system as well as to the user program.

Processes are allocated by mpi run, assigned to MPI groups (encompassing each

of the MPIRUN SPMD applications specified on the mpirun command line), and

a communicator is formed for each group. In addition to starting processes and

forming initial groups for each MPIRUN SPMD application, MPIRUN also cre-

ates several variables that enable a user to easily establish intercommunicators.

Again consider the fluid-structures example, here shown in Figure 6, the applica-

f

Multid_sciphnary Application

Figure 6: Block diagram of communicator assignments for a simple
multidisciplinary application using MPIRUN.

tion consists of two MPI groups representing each MPIRUN SPMD application,

each existing within MPI CObtbLWORLD. To aid in establishing this structure, the

following pre-defined variables are provided by MPIRUN: MPIRUN_APP -

COMM, MPIRUN_NUM_APPS, MPIRUN_APP_ID, and MPIRUN_AP-

P_LEADERS.

MPIRUN_APP_COMM

This is a communicator available to each process representing the set of processes

to that belong to the same MPIRUN SPMD application as the calling process. This

means that this communicator will be different for each lVlPIRUN SPMD applica-
tion specified on the mpirun command line, however, the name is uniform

throughout an MPIRUN program. This communicator should be used as the basis

for communication inside of each SPMD application. For example, referring to

Figure 6, a process running the fluids code can communicate to another fluids pro-

cess using MPI RUN APP_COblM. In addition, a structures process can communi-

cate to a structures process using MPIRUN APP COMM. However, for a fluids

process to communicate with a structures process an intercommunicator will have
to be formed.

14



MPIRUN_NUM_APPS

This is simply the number of MPIRUN SPMD applications started by mpirun.

Therefore for Figure 6, MPIRUN_NUM_APPS would be equal to 2.

MPIRUN_APP_ID

This is the "SPMD application ID" for the SPMD applications started by mpirun.

Each MPIRUN SPMD application will have a unique ID ranging from 0 to

MPIRUN_NUM_APPS-1. The variable MPIRUN_APP ID is defined in every pro-

cess as the application ID for the MPIRUN SPMD application to which the pro-

cess belongs. Application IDs are allocated by MPIRUN following a deterministic

allocation strategy. The rapirun command line is parsed from left to right, and as

it is parsed, groups are allocated starting with application ID 0. Using this alloca-

tion strategy it should be possible to decide the application ID for a given

MPIRUN group prior to run-time, so that programs can use application IDs to

determine what applications belong to what groups. Thus, referring to Figure 6, the

application may have been started with the following command:

mpirun -np 64 fluids_code : -np 32 structures_code

Thus, the fluids code would have MPIRUN_APP_ID equal to 0 and would be run-

ning on 64 processes, and the structures code would have MPIRUN_APP_ID

equal to 1 and would run on 32 processes.

MPIRUN_APP_LEADERS

MPIRUN_APP_LEADERS is an array intended to facilitate the creation of inter-

communicators. Recall that the MPI_Intercomm_create command requires

the calling process to know the rank of at least one member of the remote group

relative to some common communicator. Simply put, this rank is exactly what

MPI RUN_APP_LEADERS provides. More specifically, MPI RUN_APP_LEAD-

ERS [ ID] is defined as the rank relative to MPI_COMM_WORLD of the process

within MPIRUN SPMD application number ID with rank 0. For the example in

Figure 6 we could form the intercommunicator FS_INTERCOMM by having every

user process execute the following sequence in C:

if (MPIRUN_APP_COMM == 0)
ret=MPI_Intercomm_create(MPIRUN_APP_COMM, 0, MPI_COMM_WORLD,

MPIRUN_APP_LEADERS [i] , 0, &FS_INTERCOMM) ;
else

ret=MPI_Intercomm_create (MPIRUN_APP_COMM, 0, MPI_COMM_WORLD,
MPIRUN_APP_LEADERS [0], 0, &FS_INTERCOMM) ;

or,inFORTRAN:

if (MPIRUN_APP_COMM .eq. 0)
call MPI_Interconma_create (MPIRUN_APP_COMM, 0,

$ MPI_COMM_WORLD,MPIRUN_APP_LEADERS (i) , 0,
$ FS_INTERCOMM, ierr)
else

call MPI_Intercomm_create (MPIRUN_APP_COMM, 0,
$ MPI_COMM_WORLD, MPIRUN_APP_LEADERS (0) , 0,
$ FS_INTERCOMM, ierr)

15



endif

For more details on both the mpirun command and on the special features pro-

vided to MPIRUN applications, see the mpirun man page. To find out how to

obtain the MPIRUN package send e-mail to fineberg@nas, nasa. gov.

5.0 Performance

In this section MPI will be briefly compared with the native message passing layer

on three systems, the IBM SP-1, the IBM SP-2, and the Intel Paragon. The best

version of MPI currently available for the Paragon is the Argonne/MS State imple-

mentation 9 (MPICH), however, for the SP-1 and SP-2 there is an IBM developed

version of MPI available (MPI-F) [Fra94] as well as MPICH. Referring to Table 1,

TABLE 1. Message Passing Library Performance

Machine

Paragon

Paragon

Message
La?er

NX

MPlCH

Latency
(_ec)

Bandwidth
(MB/sec)

149 43.2

201 28.0

SP-I MPL/p 36 8.8
SP- 1 MPI-F 37 8.8

SP-2 MPL 43 35.6

SP-2 MPICH 52 35.5

SP-2 MPI-F 41 35.6

the latency and bandwidth of the MPI libraries were compared to the fastest pro-
prietary vendor libraries, l° These libraries are MPL/p for the SP-1, which is a fast

version of MPL developed by IBM research specifically for the SP- 1 (also known

as EUIH). For the SP-2, MPL is the normal SP-2 message passing library, there is

no IBM research version of MPL for the SP-2. For the Paragon, the only vendor

supplied library is NX.

As can be see from Table 1, there is a significant, but not prohibitive, penalty for

using a non-vendor supplied MPI implementation (i.e., MPICH) for point-to-point

communication. This effect appears as higher latency and in some cases lower

bandwidth. For most systems, only the latency is effected, however, in the case of

the Paragon, memory copying is quite slow and this limits the performance of

MPICH since it adds an extra buffering step.ll On the SP-2, memory copies are

fast, so MPICH has higher latency but virtually identical bandwidth (see Figures 7

and 8). For the vendor supplied version of MPI (MPI-F), the penalty is essentially

non-existent on the SP-1, and the MPI-F performance is measurably better than

MPL on the SP-2. While this advantage of MPI-F over MPL is probably due to

9. This MPI implementation is available via anonymous FTP at info. mcs. anl. gov.

10. These experiments were run in August and September 1994. The SP-2 used has 64 "wide" processing

nodes with 128 MB of RAM per node. The Paragon had 208 compute nodes, 32MB per node, and the commu-
nication coprocessors were not enabled. The SP-1 had 128 nodes, 64MB/node.

11. This effect would probably have been less had the communication coprocessor been enabled, however,

this was not available on the NAS Paragon at the time the experiments were performed.

16



120.0

100.0
t-.
0

80.0

.g

60.0

4°.°olo 2oo.0 4oo.0 6oo.0
Message Size (bytes)

Figure 7: Comparison of SP-2 Message Latency

tiv (MPL /,_../-- _B_ _esearc_t MPI (MPI-F_

..... Argonne/MSStateNIPI (MpIC._ /J .

/../L_J

J i I ¢ I "

800.0 1000.0

...m

t_

30.0

20.0

10.0

.,¢ v v

-- _g,tiV_(seMl_L_Mp
_r_'_nn_r_tateI_tf_ICH)

5.0e+05 1.0e+06

Message Size (Bytes)

Figure 8: Comparison of SP-2 Message Bandwidth

optimizations used by IBM research that were not possible in the "production"

message passing library, it provides evidence that there are no "flaws" in MPI pre-

venting it from performing well.

For collective communication, even with the added complexity of communicators,

MPI-F also performs better than MPL on the SP-2. In Figures 9 and 10, two repre-
sentative forms of collective communication are shown for the SP-2, barrier syn-

chronization and broadcast of a 1K message. As can be seen, MPI-F gets

consistently better collective communication performance over MPL and MPICH.

This is due to two factors, the lower latency of MPI-F, and the use of better algo-

rithms than MPL. The algorithmic improvement is most evident for Barrier Syn-

chronization. MPICH is significantly worse than MPL, however the performance

loss is less than a factor of two. This is relatively good given the approximately

20% higher latency provided by MPICH.

17



t'v (MPL

 oo.o

t

i 200.O f

001 ' , . , ,O. 0 10.0 20.0 30.0

Number of Processors

Figure 9: Comparison of SP-2 Synchronization Performance

300.0

.o

v

._. 2oo.0

m 100.0

- , . , . ,

/ _ iv (MPL
,'f _q__ _v_V_( sear¢_i MPi, Mp i F)

@-4Argbfi/ie/MSState MPI (MPI H)

% | * !0..0 10.0 20.0

Number of Processors

Figure 10: Comparison of SP-2 Broadcast Performance

6.0 Summary

I

30.0

In this paper it has been shown that it is possible to create multidisciplinary appli-

cations using MPI for communication and that MPI is capable of providing perfor-

mance commensurate with proprietary message passing libraries. Further, a

portable loader interface has been created to simplify program initiation enable

these MPI codes to be portable. Thus, using MPI and MPIRUN it is now possible

to create portable multidisciplinary and multi-zonal applications. Further, the

MPIRUN interface was designed to be generic enough so that it can be imple-

mented on any MIMD architecture, as evidenced by the variety of machines it cur-
rently runs on.

18



7.0 References 12

[BaW93] E. Barszcz, S. Weeratunga, and E. Pramono, A Model for Executing

Multidisciplinary and Multizonal Programs, Report Number
RNR-93-009, NASA Ames Research Center, 1993.

[Bar91] E. Barszcz, Intercube Communication for the iPSC/860, Report Num-

ber RNR-91-030, NASA Ames Research Center, 1991.

[BuL92] R. Butler and E. Lusk, User's Guide to the P4 Programming System,

Tech. Report RM-ANL-92/17, Argonne National Laboratory, 1992.

[Fin93c] S. Fineberg, Implementing the NHT-1 Application I/0 Benchmark,

Report RND-93-007, NASA Ames Research Center, 1993.

[Fra94] H. Franke, MPI-F: An MPI Implementation for IBM SP-1/SP-2, Ver-

sion 1.30, Technical Report, IBM T. J. Watson Research Center, 1994.

[GeB93] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.

Sundaram, PVM 3 User's Guide and Reference Manual, Report ORN-

L/TM- 12187, Engineering, Physics, and Mathematics Division, Mathe-

matical Sciences Section, Oak Ridge National Laboratory, 1993.

[GeS91] G. Geist and V. Sunderam, Network Based Concurrent Computing on

the PVM System, Tech. Report TM-11760, Oak Ridge National Labora-

tory, 1991.

[Ibm94] IBM, IBM AIX Parallel Environment Operation and Use Release 2.0,

International Business Machines Corp., 1994.

[Mes94] Message Passing Interface Forum, MPh A Message-Passing Interface

Standard, Computer Science Dept. Technical Report CS-94-230, Uni-

versity of Tennessee, 1994.

12. NAS technical reports are available by sending e-mail to doc- center@nas, nasa. gov or via WWW

atURL: _http ://www. na. nasa. gov".

19



Title:

Implementing Multidisciplinary and
Multi-zonal Applications Using MPI

NAB

.i4iiiiiiii_i_ii_iiiiiiiiii_Biiiii!i_iiiii_iii_iiiiiiiiiiiiiiiiii!ii_iiiii_iiiiiiAu tho r( s):

Samuel A. Fineberg

Reviewers:

"I have carefully and thoroughly reviewed

this technical report. I have worked with the

author(s) to ensure clarity of presentation and

technical accuracy. I take personal responsi-
bility for the quality of this document."

Signed:

Name:

ii_ii_i_i_iii_iii_i!i_i!i!!iii!iii!iiiiiiiiiiiii_i_iiiii_ii_i_ii_i_!_i_iiiiiiiii

Date:

Signed:

Name:

Branch Chief:

Approved:

NAS ReportNumber:

20


